目录
1.什么是凸性2.凸性的计算3.凸性的性质4.债券凸性投资价值的评估
假设我们面对两个不同期次,具有相同存续期间的政府公债(无信用风险),两者的市场殖利率也正好相同,投资人对这两张债券是否会有不同的偏好呢?基于债券凸性的特质,如果两者有着不同的债券凸率,理性投资人应该会偏好债券凸率较高的公债。因此,在市场供给需求的调整下,我们可以预期两公债的殖利率必将有所调整,以反应投资人对高凸率公债的偏好。投资人对于高凸率债券的殖利率要求将会低于凸率较小的债券,也就是说,在其他条件相同的情况下,高凸率债券的价格应该比低凸率债券为高,以反应债券凸性的价值。
然而,市场中的债券价格果真有反应出债券凸性的价值吗?KAhnandLochoff(1990)使用1981年至1986年的美国公债为样本,发现债券凸性在某些情况下会给投资人带来超额投资报酬,也就是说即使投资人以较高的价格购入具有高债券凸率的债券,其投资报酬仍然要比投资于低凸率债券为佳,这显示出交易市场对于债券凸性的定价并不正确,因此存在有超额获利空间。LaceyandNawalkha(1993)则提出了不同的结论。这两位学者以1976到1987年的美国公债为样本作分析,结果并未发现高债券凸性会带给投资人超额的报酬,表示其已被市场正确的定价。
国内在此方面的实证研究也有不少,林聪钦(1995)以国内公债及公司债为样本,发现债券凸性对于超额投资报酬有解释能力,李耀宗(1995)针对国内公司债作分析,也发现债券凸性是超额投资报酬的解释因子之一,显示出针对债券凸性的操作策略是值得投资人重视的。吴荣昌(1997)使用1992到1996年国内所发行之35期次的政府公债,以时间序列进行横断面回归分析,来测试债券凸性以及其他因子解释债券超额报酬的能力。该研究结果发现,债券凸性在解释国内公债超额报酬的能力上并不显著,再度验证国内公债市场投资人对于债券凸性并未做出合理定价,这表示市场投资人或可针对债券凸性找出套利机会。
举例来说,投资人可以透过换券操作,在维持原有的存续期间条件下,将债券投资组合中低凸率债券换为高凸率债券,以获取更高的投资报酬。以市场中常见的平衡式操作法与单一式操作法为例,由于平衡式债券组合所产生的现金流量较为分散,在存续期间相同的情况下,要比单一式债券组合的凸率要高。如果国内公债市场果真对于凸率的定价不具效率,投资人可以在现有交易的各期次债券中,选取组成一个与目标债券存续期间相当的债券投资组合。由于债券组合之凸率较高,只要该组合的加权平均殖利率与目标债券的殖利率相当,投资人就可以享有更高的预期投资报酬率。而且即使该债券组合的殖利率要比目标债券为低,但是在考量债券凸性的价值后,其预期报酬率仍有可能会比较好.
债券凸性价值与利率波动
债券凸性价值的存在是建基于未来利率的变动,利率变动幅度越大,债券凸性的价值就越高。而如果利率维持不变或变动幅度不大,以债券凸性为主轴之操作策略效果是不易彰显的。然而,市场中常用的债券投资报酬衡量,包括殖利率(yielDTomaturity),以及持有期间报酬率(holdingPEriodreturn)等,均是假设利率结构曲线(yieldcurve)维持不变,利率波动幅度为零,这与实际市场情况大有出入。以一个目前市场殖利率为8%的债券而言,除非投资人持有该债券到期,而且在持有期间内该债券所产生之现金流量均可取得8%的再投资报酬率,否则投资人实际的报酬率将不会等于8%。换句话说,除非利率结构曲线不变,否则该债券的预期报酬率将不会等于殖利率,因此以殖利率为报酬衡量指标的投资决策容易产生偏误。
持有期间报酬率放宽了投资期间必须等于债券到期期限的限制,衡量投资人在预定之投资期限内的报酬。假设一个殖利率为8%的五年期债券,投资期限设为2年,则持有期间报酬率的计算就是依据这两年内之债券现金流量,加上两年后该债券的市场价值来决定。但是未来债券价值的计算仍是以在假设目前殖利率曲线维持不变的情形下所推估出来的远期利率(forwardrate)来决定。因此持有期间报酬率的正确性仍然取决于未来利率不变的假设。
实际的情况是,未来利率必定会有波动,如果投资人不将此因素纳入投资报酬的衡量过程,当然会产生决策上的误差,而由于债券凸性的存在,利率的波动将会提升债券的价值,因此持有期间报酬率会低估(under-estIMate)债券的预期投资报酬率,而误差的部分就等于债券凸性的价值。
Ilmanen(1995)提出了一个将未来利率波动纳入考量的报酬衡量指标,我们称之为凸性调整后预期报酬(Convexity-adjustedexpectedreturn),该指标定义如下:
凸性调整后预期报酬=持有期间报酬率+债券凸性价值
其中债券凸性价值的衡量是依据债券凸率(Conv)以及预期之殖利率波动程度(Vol(dy))计算如下:
债券凸性价值=
由于许多债券操作,例如利率交换交易等,需要正确的远期利率估计值来作为定价的基础,因此债券凸性偏误对于利率期间结构曲线的影响值得投资人注意。例如BurgharidtandHoskins(1995)在一篇研究报告中就指出,市场人士惯用欧元期货价格来估计远期利率,以作为利率交换定价的基础。但是当市场利率波动增加时,由于利率交换价格具有债券凸性,而欧元期货的价格与报酬关系为线性(凸率为零),因此传统的市场操作方式会出现明显套利机会。简单来说,投资人只需要放空利率交换(也就是收固定利率,付浮动利率),并放空欧元期货来避险,便可以无风险的获取此凸性偏误的价值。由于该文比较偏重在衍生商品交易之应用,与本文主旨不尽相同,在此不做更进一步的介绍,有兴趣的读者可自行参阅该文。
发表评论