目录
芝诺简介
芝诺(Zeno of ELEA)生于意大利半岛南部的埃利亚城邦,他是埃利亚学派的著名哲学家巴门尼德的学生和朋友。
据说他在母邦度过了一生,仅在成名之后到过雅典。据传说,芝诺因蓄谋反对埃利亚的君主而被处死。关于他的生平,缺乏可靠的文字记载。柏拉图在他的对话《巴门尼德篇》中,记载了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问。其中有这样的文字:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂。那时的芝诺约40岁,身材魁梧而美观,大家说他已经变成巴门尼德所钟爱的了。”在以后的希腊著作家看来,这次访问是柏拉图虚构的。但柏拉图有关芝诺观点的记叙,却被普遍认为是准确的。在柏拉图的巴门尼德篇中,当芝诺谈到自己的著作(论自然)时,这样说道:“由于青年时的好胜著成此篇,著成后,人即将他窃去,以至我不能决断,是否应当让它问世。 ”芝诺不象他的老师那样企图从正面去证明是一不是多,是静不是动,他常常从反面即归谬法来为“存在论”辩护。公元五世纪的评论家普罗克洛斯说过,芝诺从“ 多”和运动的假设出发,一共推出了40个各不相同的悖论。现存的芝诺悖论至少有8个,其中关于运动的4个悖论最为著名。芝诺的著作早已失传,亚里士多德的物理学和辛普里西奥斯为物理学作的注解是了解芝诺悖论的主要途径,此外只有少量零散的文献可作参考。
直到19 世纪中叶,亚里士多德关于芝诺悖论的引述及批评几乎是权威的,人们普遍认为芝诺悖论不过是一些诡辩。英国数学家B.罗素感慨的说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。死后得不到应有的评价的最典型例子莫过于埃利亚的芝诺了。他虽然发明了四个无限微妙无限深邃的悖论,后世的大批哲学家们却宣称他只不过是个聪明的骗子,而他的悖论只不过是一些诡辩。遭到两千多年的连续驳斥之后这些诡辩才得以正名,…。”19世纪下半叶以来,学者们开始重新研究芝诺。他们推测芝诺的理论在古代就没能得到完整的、正确的报道,而是被诡辩家们用来倡导怀疑主义和否定知识,亚里士多德正是按照被诡辩家们歪曲过的形象来引述芝诺悖论的。目前,学者们对芝诺提出这些悖论的目的还不清楚,但大家一致认为,芝诺关于运动的悖论不是简单的否认运动,这些悖论后面有着更深的内涵。亚里士多德的著作保存了芝诺悖论的大意,从这个意义上来说,他功不可没,但他对芝诺悖论的分析和批评是否成功,还不可以下定论。
有关芝诺悖论在古希腊数学发展中起到的作用,在科学史上众说纷纭。P· 汤纳利首先提出,不是巴门尼德而是毕达哥拉斯学派发现的不可公约量,对芝诺悖论的提出产生了深刻的影响。H·赫斯和H·斯科尔斯则认为芝诺是对古代数学的发展起决定影响的人物,他们试图证明,毕达哥拉斯学派曾假定存在无限小的基本线段,想以此来克服因发现不可公约量而引起的矛盾,而芝诺的悖论反对了这种不准确的做法,从而迫使其他数学家去寻找真正的原因所在。另有一些学者持有完全不同的观点,他们认为芝诺对那个时代的数学发展没有作出任何重大的贡献。不管争论的结果如何,人们无须担心芝诺的名字会从数学史上消失,就像美国数学史家E·T·贝尔说的,芝诺毕竟曾“以非数学的语言,记录下了最早同连续性和无限性格斗的人们所遭遇到的困难。”芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系惹人注意地摆了出来,并进行了辨证的考察。在哲学上,芝诺被亚里士多德誉为辩证法的发明人,黑格尔在他的哲学史演录中指出:“芝诺主要是客观的辨证的考察了运动,并称芝诺为“辩证法的创始人”。
芝诺的四个悖论
(1) 两分法
“运动是不存在的,理由是位移事物在达到目的地之前必须先抵达一半处。”J·伯内特注释说,不可能在有限的时间内通过无限多的点,在你走完全程之前必须先走过给定距离的一半,为此你必须走过一半的一半,等等,直到无穷。亚里士多德批评芝诺说:他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触。要知道,事物在有限的时间里不能和数量上无限的事物相接触,但却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。
(2) 阿基里斯与乌龟
“一个跑得最快的人永远追不上一个跑得最慢的人。因为追赶者首先必须跑到被追者的起跑点,因此走得慢的人永远领先。”伯内特解释说,当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可以无限的接近它,但不能追到它。亚里士多德指出:认为在运动中领先的东西不能被追上这个想法是错误的。因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。
(3) 飞箭静止
“如果任何事物,当它是在一个和自己大小相同的空间里时(没有越出它),它是静止的。如果位移的事物总是在“现在”里占有这样一个空间,那么飞着的箭是不动的。”亚里士多德批驳说:他的这个说法是错误的,因为时间不是由不可分的“现在”组成的,正如别的任何量都不是由不可分的部分组合成的那样。这个结论是因为把时间当作是由“现在”组合成的引起的,如果不肯定这个前提,这个结论是不会出现的。
(4) 运动场悖论
“第四个是关于运动场上运动物体的论点:跑道上有两排物体,大小相同而且数目相同,一排从终点排到中间点,另一排从中间点排到起点。它们以相同的速度沿相反方向作运动。芝诺认为从这里可以说明:一半时间和整个时间相等。”亚里士多德指出:这里错误在于他把一个运动物体经过另一运动物体所花的时间,看作等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。
芝诺语录
- 人的知识好比一个圆圈,圆圈里面是已知的,圆圈外面是未知的。你知道的越多,圆圈就越大,你不知道的也就越多。
- 我们两只耳朵,但只有一张嘴,所以应该多听少说
- 生活的目标是使生活合乎于自然规律。
- 芝诺说:“假如你肯定变化,则在变化里就包含着变化的否定,或变化不存在”。
- 真实的东西是静止的。飞行的箭在一定的时间内会经过许多点,在每个点上必然要停留,因此是静止的。
- 一个在A点运动的物体是永远不能达到B点的。因为,它在到达B点之前,必须首先走完AB两点之间的一半距离;而在这之前,它又必须走完这一半距离中的一半。因此,它就永远不可能到达B点。
相关条目
- 芝诺悖论
发表评论